17. Exercises week 1#

Hint

At some exercises we provide hints. These can contains tips to help you find the answer, but they can also contain additional information. So, if you managed to answer the question without looking at the tip: great! But please also check the tip, because there might still be valuable information there.

\(\def\pafg#1#2{\dfrac{\partial #1}{\partial #2}}\) \(\def\afg#1#2{\dfrac{{\rm d} #1}{{\rm d} #2}}\)

17.1. #

Calculate the Reynolds number of the following flows \((\nu_{air}=1.5\cdot10^{-5}\ \rm{m^{2}\ s^{-1}}, \nu_{water}=1.0\cdot10^{-6}\ \rm{m^{2}\ s^{-1}}, \nu_{blood}=3.8\cdot10^{-6}\ \rm{m^{2}\ s^{-1}})\). Classify if these flows are laminar or turbulent.

a) Atmospheric convective boundary layer (W=1 \(\mathrm{m\ s^{-1}}\), L=1000 m)

b) Oceanic internal waves (U = 0.05 \(\rm{m\ s^{-1}}\), L= 10000 m)

c) Blood circulation ( U = 0.3 \(\rm{m\ s^{-1}}\), L= 0.01 m)

17.2. #

The velocity and the temperature fields of a flow are given by:

\[ \vec U=(2x^2, xy, \ln(x)+zy)~(\rm{m\ s^{-1}}) ~~~~~~ T = 4x + zy ~(C) \]

a) Calculate the temperature gradient at the point (0, 1, 1).

b) Calculate the velocity divergence at the point (-1, 5, 0). Is it a incompressible or compressible flow at this point?

17.3. #

Let \(c\) be a constant, \(t\) a function of time and \(A\) and \(B\) turbulent variables. Expand the following terms into a mean and turbulent parts and apply Reynolds rules to simplify the expressions as much as possible.

a) \(\overline{cAB}\)

b) \(\overline{A\pafg{B}{t}}\)

c) \(\overline{\pafg{A}{t}\pafg{B}{t}}\)

17.4. #

The following terms are given in summation notation. Expand them (that is, write out each term of the indicated sums).

a) \(\pafg{\overline{u_i'u_j'}}{x_j}\)

b) \( u_i'\pafg{\theta'}{x_i} \)

c) \( \overline{u_j} \pafg{\overline{u_i'u_k'}}{x_j} \)

d) \( \delta_{i3}g \)

e) \( \pafg{\tau_{mn}}{x_n} \)

17.5. #

With a frequency of 1 Hz and during 8 seconds we have measured the following values of the vertical velocity and specific humidity

t [s]

0

1

2

3

4

5

6

7

\(w\ \rm(m\ s^{-1})\)

0

-2

-1

1

-2

2

1

1

\(q\ \rm(g\ kg^{-1})\)

8

9

9

6

10

3

5

6

a) Calculate the time average of \(w\) and \(q\)

b) Calculate the moisture flux. What is the direction of the flux?

c) Calculate the vertical velocity and specific humidity variances

17.6. #

We have measured in a meteorological mast the following values for the wind: \(\rm{\overline{u}}\)(2 m)= 2.8 \(\rm{m\ s^{-1}}\) and \(\rm{\overline{u}}\)(20 m) = 5.75 \(\rm{m\ s^{-1}}\).

a) Calculating using linear interpolation the value of the wind at 9 m.

b) If the wind velocity gradient reads:

\[ \pafg{\overline{u}}{z}=\frac{u_*}{\kappa~z}. \]

Assuming the following values for the friction velocity (=0.5 \(\rm{m\ s^{-1}}\)), the roughness length (= 0.2 m) and the Von Karman constant (=0.4), calculate the wind speed at 9 m.

c) Estimate the error associated to the calculation of the wind speed using the linear interpolation.

17.7. #

The general momentum equations are:

\[\begin{split} \begin{cases} \pafg{u}{t} + u_j \pafg{u}{x_j} = f v - \dfrac{1}{\overline{\rho}}\pafg{p}{x}+ \nu \pafg{^2u}{{x_j}^2} \\ \pafg{v}{t} + u_j \pafg{v}{x_j} = - f u - \dfrac{1}{\overline{\rho}}\pafg{p}{y}+ \nu \pafg{^2v}{{x_j}^2} \end{cases} \end{split}\]

a) Simplify these equations by

  • applying Reynolds averaging;

  • considering \(\overline{w} = 0\), horizontal homogeneity of the wind and incompressibility;

  • neglecting the small viscosity term;

  • assuming that at larger scales the Coriolis force and horizontal pressure gradients balance to reach a geostrophic wind.

b) Now suppose that \(\overline{u'w'}=-(u_*+cz)^2\) and \(\overline{v'w'}=0\) for all \(z\) and the geostrophic velocities for the x- and y-components are 5 \(\rm{m\ s^{-1}}\) and 5 \(\rm{m\ s^{-1}}\) at all heights, respectively.

Find the acceleration of air in the x- and y-directions \(\left(\pafg{\overline{u}}{t}, \pafg{\overline{v}}{t}\right)\) at a height of 100 m in the ABL. The initial velocities at 100 m are \(\overline{u}=\ 4\ \rm{m\ s^{-1}}\) and \(\overline{v}=\ 2\ \rm{m\ s^{-1}}\).

(\(u_* = 0.3\ \rm{m\ s^{-1}}\), \(f = 10^{-4}\ \rm{s^{-1}}\) and \(c = 10^{-3}\ \rm{s^{-1}}\)).